LINEAR & QUADRATIC KNAPSACK OPTIMISATION PROBLEM

Supervisor: Prof. Montaz Ali

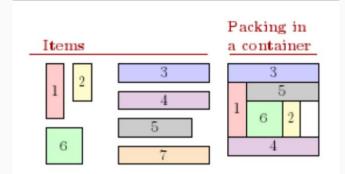
Alex Alochukwu, Ben Levin, Krupa Prag, Micheal Olusanya, Shane Josias, Sakirudeen Abdulsalaam, Vincent Langat January 13, 2018

GROUP 4: Graduate Modelling Camp - MISG 2018

- The Knapsack Problem is considered to be a **combinatorial optimization problem**.
- The **best selection and configuration** of a collection of objects adhering to some objective function defines combinatorial optimization problems.

To determine the number of items to include in a collection such that the total weight is less than or equal to a given limit and the total value is maximised.

PROBLEM DESCRIPTION: KNAPSACK PROBLEM



Given n-tuples of positive numbers $(v_1, v_2, ..., v_n)$, $(w_1, w_2, ..., w_n)$ and W > 0. The aim is to determine the subset S of items each with values, v_i and w_i that

Maximize
$$\sum_{i=1}^{n} v_i x_i, \quad x_i \in \{0,1\}, x_i \text{ is the decision variable}$$
 (1)

Subject to:
$$\sum_{i=1}^{n} w_i x_i < W,$$
 (2)
where $W < \sum_{i=1}^{n} w_i.$

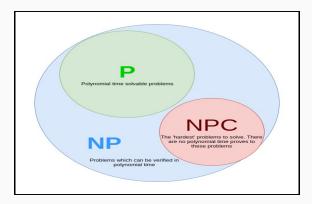
- · Extension of the linear Knapsack problem.
- Additional term in the objective function that describes extra profit gained from choosing a particular combination of items.

Maximize
$$\sum_{i=1}^{n} c_i x_i + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij} x_i x_j$$
 (3)
Subject to: $\sum_{j=1}^{n} w_j x_j < W, \quad j = \{1, 2, ..., n\},$ (4)
where $x \in \{0, 1\},$ Max $w_j \le W < \sum_{i=1}^{n} w_j.$

A Knapsack model serves as an abstract model with broad spectrum applications such as:

- · Resource allocation problems
- · Portfolio optimization
- · Cargo-loading problems
- · Cutting stock problems

• The **abstract measurement** of the rate of growth in the required resources as the **input** *n* **increases**, is how we distinguish among the complexity classes.



The following solution schemes were proposed for solving the Linear and Quadratic Knapsack Problem:

- · Greedy Algorithm
- · Polynomial Time Approximation Scheme
- \cdot Exact Method (Branch and Bound Algorithm)
- · Dynamic Programming (Bottom up)

- 1. Identify the available items with their weights and values and take note of the maximum capacity of the bag.
- 2. Use of a score or efficiency function, i.e. the profit to weight ratio:

$$\frac{V_i}{W_i}$$
.

- 3. Sort the items non-increasingly according to the efficiency function.
- 4. Add into knapsack the items with the highest score, taking note of their accumulative weights until no item can be added.
- 5. Return the set of items that satisfies the weight limit and yields maximum profit.

- 1. Sample *k* items from the set of *n* items.
- 2. Obtain a set of all pairs from the *k* items.
- 3. Sort the items non-increasingly according to the efficiency function

$$S=\frac{d_{ij}}{w_i+w_j}.$$

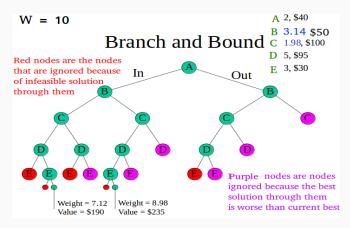
- 4. Add into knapsack the pair of items with the highest score, ensuring that the accumulated weight does not exceed the maximum capacity.
- 5. Repeat steps 1 through 4 until pairs can no longer be added.
- 6. Fill remaining capacity with singleton items, using the previous greedy approach.

1. Consider all sets of up to at most k items

 $\mathcal{F} = \{F \subset \{1, 2, ..., n\} : |F| \le k, w(F) < W\}$

- 2. For all F in \mathcal{F}
 - Pack F into the knapsack
 - \cdot Greedily fill the remaining capacity
 - · End
- 3. Return highest valued item combination set

Branch and Bound performs systematic enumeration of candidate solutions by means of state search space.



- · DP: What is the idea?
- · Pros?
- · Cons?

DYNAMIC PROGRAMMING: BOTTOM-UP

- 1. Construct $V \in \mathbb{R}^{n \times W}$
 - *n* = Total number of objects to be packed
 - *W* = maximum weight capacity.

For $1 \le i \le n$, and $0 \le w \le W$, V(i, w) stores the maximum value of variables $\{1, 2, ..., i\}$ of size at most w.

- 2. V(n, W) is the optimal value of the problem.
- 3. Recursion

The process is as follows:

Initialization:

 $V(0, w) = 0 \forall w \in [0, W]$ (no item); $V(i, w) = -\infty$ if w < 0Recursive step:

$$V(i, w) = \max(V(i - 1, w), v_i + V(i - 1, w - w_i))$$
 for

 $1 \le i \le n, 0 \le w \le W.$

 $v_i \in \overline{V}$ is the set of values of the objects to be packed while $w_i \in \overline{W}$ is their corresponding weights.

Let W = 10 and

i	1	2	3	4	
Vi	10	40	30	50	
Wi	5	4	6	3	

W	0	1	2	3	4	5	6	7	8	9	10
i = 0 1 2 3 4	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	10	10	10	10	10	10
2	0	0	0	0	40	40	40	40	40	50	50
3	0	0	0	0	40	40	40	40	40	50	70
4	0	0	0	50	50	50	50	90	90	90	90

The optimal value is V(4, 10) = 90. The items that give the maximum value are 2 and 4.

Table: Algorithm Optimality

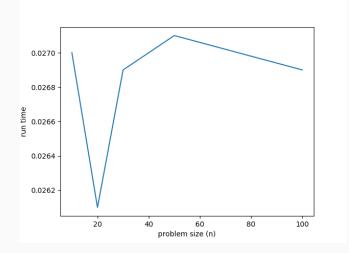
	Greedy	PTAS	Dynamic Programming	BB
N = 30	261	261	261	261
N = 50	480	481	481	481
N = 100	891	891	891	891

Table: QKP optimality

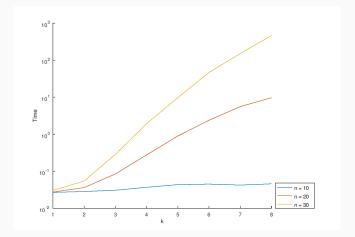
	K = 0.5 * N	K = N
N = 10	195	179.5
N = 20	735.5	853.5
N = 30	1739.5	2572.5
N = 50	4755	7528
N = 100	18551.5	16855

- 1. Greedy Algorithm
 - With sorting: $\mathcal{O}(nlogn)$
 - Without sorting: $\mathcal{O}(n^2)$
- 2. Polynomial Time Approximation Scheme
 - · $\mathcal{O}(kn^{k+1})$
- 3. Dynamic Programming
 - · $\mathcal{O}(nW)$

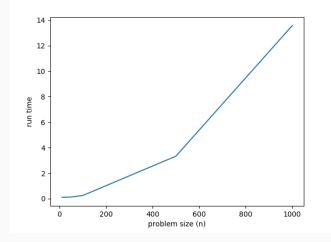
GREEDY RUNTIME



PTAS RUNTIME



DP RUNTIME



- 1. Combinatorial problems are hard to solve.
- 2. Many applications in industry.
- 3. Interesting research questions.
- 4. Better data.

K. Lai.

The Knapsack Problem and Fully Polynomial Time Approximation Schemes (FPTAS). 18.434: Seminar in Theoretical Computer Science, 2006.

🚺 M. Ali.

Discrete Optimisation .

Lecture notes.